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BEAM ANALYSIS OF AXISYMMETRICAL SHELLS

ViGGO TVERGAARD

Department of Solid Mechanics, The Technical University of Denmark, Lyngby, Denmark

Abstract—A generalized beam theory, earlier developed by the author, is applied to a rotationally symmetrical
shell structure consisting of cylindrical and conical sections. It is shown that this theory, in which the flexibility
of the beam is specified by four functions, is adequate for treating the shell structure as a beam in bending
in cases where the Bernoulli-Euler and Timoshenko beam theories prove to be deficient.

Flexibility functions are derived from the membrane equations of the shell structure, and modifications at
the boundaries are obtained from the complete shell equations.

1. INTRODUCTION

BEAM-LIKE shell structures cannot in general be treated adequately as one-dimensional
structures by the Bernoulli-Euler or the Timoshenko beam theories. However, a one-
dimensional treatment with all its advantages need not be abandoned in the calculation
of certain properties of beam-like shell structures provided a more general beam theory
is employed. In a previous paper [1] such a beam theory was developed, and it was applied
to the calculation of natural frequencies of some beam-like trusses that cannot be treated
adequately by the other beam theories. In the present paper we derive the four beam
functions, defining the flexibility of the beam, for an axisymmetrical thin shell composed
of cylindrical and conical sections. As it is characteristic of beams with thin-walled cross-
sections that the bending moment and the transverse shear force are mainly transmitted
by membrane forces, we begin by deducing a set of beam functions from the membrane
theory. Because of boundary effects these beam functions should be corrected in the
vicinity of a junction between a conical and a cylindrical shell.

2. BEAM-LIKE STRUCTURES

The beam-like structures under consideration are straight and elastic, and symmetrical
about the plane in which all loads act. An axisymmetrical thin shell is an example of such
a structure provided the external loads are beam-type loads.

In Fig. 1, the positive directions are defined for the bending moment M and the
transverse shear force T. The external loads are ¢.dx and m.dx. Figure 2 shows the
positive directions of the transverse deflection y, the angle of rotation of the cross-section v
and the angle y between the normal of the cross-section and the middle line.

According to Ref. [1] the constitutive equations are

dv

a:allM",‘alzT (21)
dy
a;—v =a, M+a,, T (2.2)
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T

F1G. 1. Loads on an element of the beam.

where the four beam functions a, (x), a,,(x), a,,(x) and a,,(x) determine the flexibility
of the beam. The equations of equilibrium for the beam are

d fay, dv a,,(dy
e e Ny = R
dx{ D dx D \dx ! 1 (2.3)
d dy, dv ag,(dy a,, dv a; (dy _
dx{ Dax Dldx )T \Dax Dlax Yy " @24)
where the function D(x) is defined as
D(x) = a;(x)a,,(x)—a (x)a,,(x). (2.5)

Different sets of boundary conditions for the beam are mentioned in Ref. [1]. It can be
shown that Maxwell’s theorem results in the condition

dyy =04y, (2.6)
Furthermore, the conditions

a;, >0, ay, >0, Aylyy—dysdy >0 (2.7)

must be satisfied, as the strain energy has to be positive.

3. BEAM FUNCTIONS DERIVED FROM MEMBRANE THEORY

In this section we shall derive a set of beam functions for a conical shell, assuming that
the membrane theory is valid.

FiG. 2. Deformations of an element of the beam.
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As shown in Fig 3, we choose the coordinate system so that a point (u', u?) on the
middle surface of the conical shell has the cartesian coordinates

xi(u®) = (u' cos y, u' sin y sin u?, u' sin  cos u?). (3.1

The unit normal to the surface is X"

F1G. 3. Conical surface. For comparison with Figs. 1 and 2, the x—y-coordinates are shown in parentheses.

Shell theory

In the following we are going to use a set of shell equations given by Niordson [2].
These equations are acceptable in the sense of Koiter [3].

The displacements of a point on the middle surface are v* in the directions of the
surface base vectors and w in the direction of the surface normal. The deformations of the
middle surface can be expressed by the membrane strain tensor

E.; = 3(Dv;+ Dyv) —dgw (3.2)
and the bending strain tensor
Ky = D,Dyw+d, Dy’ +d; Dv" +0'Dyd,, —dy diw (3.3)

where d,; is the curvature tensor of the undeformed middle surface and D, denotes covariant
differentiation.

The external loads per unit area of the middle surface are F* and p, acting in the direc-
tions of the surface base vectors and the surface normal, respectively. Then the equations
of equilibrium can be written in the form

D,N® 424D M + MDd* + F* = 0 (3.4)
D,DyM™ —d yd® M* —d N —p = 0 (3.5)
where N is the symmetric membrane stress tensor and M* is the symmetric moment

tensor.
We assume that the constitutive equations for the shell are

Eh
N* = {1—v)E* +vg*E?} (3.6)

1—v?

ER3
Y A
12(1= vl){

(1—v)K* +vg* K7} (3.7)
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where g* is the metric tensor of the undeformed middle surface, E denotes Young's
modulus, v 1s Poisson’s ratio and h is the shell thickness.

Resultant moment and forces on a cross-section

We consider a cross-section perpendicular to the symmetry axis of a conical shell
(Fig. 4). The unit normal vector to the edge is denoted »n® and the unit tangent vector is ¢*
The parameter ¢ measures length along the edge of the shell.

It can be shown that the virtual work of the resultant forces and moment on the edge is

04 = fﬁ (T, + Qrow+ M 86) dé (3.8

FiG. 4. Resultant moment and forces on the edge of a conical shell.

where the effective boundary membrane force per unit length is
T* = (N?+d;MP7 + d2t " MP)n, (3.9
the effective transverse force per unit length is
Ok = — (D My —o(M*n,i,)/0¢ (3.10)
the bending moment per unit length is
My = M*n,n, (3.1h
and 8 denotes the rotation of the tangent vector. Index K refers to the conical shell, while

index C will later refer to a cylindrical shell. The normal component and the tangential
component of the membrane force are N¢ = T%n, and T, = T%,, respectively.

Fourier expansions of displacements

We now introduce the physical displacements U = ¢!, V = u'sinyv? and W = w,
and the traditional nomenclature (s, ¢} = (u'.u?} for the coordinates on the conical
surface. Using a standard Fourier expansion of the displacement functions for an axisym-

metrical shell, we assume the solution

iad
[

U 1 U {s) cos( j¢)

V=) <Vis)sin(jo) ;. (3.
Wﬂ " {wgs) costig)
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Then by application of equations (3.2), (3.3) and (3.6), (3.7), we find that the resultant
forces and moment per unit length of the edge can be written in the form

N N {s) cos(j)
T, x Ty {s) sin(j
K| _ 5 As) sin(j@) G13)
o j=0 | Qg/s)cos(jo)
M MKj(S) cos(jo)

and if we make a similar Fourier expansion of the external loads F* and p, we find that
the equations of equilibrium decouple into an infinite number of systems of three ordinary
differential equations for the s-dependent functions U, V; and W,. These are given in
Section 3.

As we wish to consider the shell as a beam, we shall now express the bending moment M
and the transverse shear force T for the beam (Fig. 1) in terms of the resultant forces and
moment on a cross-section of the shell (Fig. 4). As indicated in Fig. 3, we choose the beam
coordinates so that y = x*> and x = x!. We calculate the contributions of the resultant
moment and forces for any value of j in the expansions (3.13). The contributions to the
bending moment for the beam are:

2n
M; = {(—Nchos ¥+ Qg sin ¥)s? sinzz//—i-Mst sin lp}f cos ¢ cos(j¢p) do
0

(3.14)
{O, forj#1
B T{(—Ng;cos Y+ Qy;sin y)ssiny + My }ssinyy, forj=1
and the contributions to the transverse shear force for the beam are:
2n
T, = (Ng;sin iy + Qg cos )s sin j cos ¢ cos(jo) d¢
4]
2n
—Tyssiny f sin ¢ sin( j¢) d¢
° (3.15)

{0, for j # 1
B T(Ng;siny +Qy;cosy— Ty )ssinyy, forj = 1.

Equations (3.14) and (3.15) show that only the terms with j = 1 in the expansions
(3.12), (3.13) are able to transmit a bending moment and a transverse shear force.
Consequently, only these terms are relevant when we wish to describe the shell by a beam
theory.

Membrane theory

It is characteristic of beams with thin-walled cross-sections that the bending moment
and the transverse shear force are mainly transmitted by the membrane forces. Therefore,
it is natural first to determine the four beam functions from the membrane theory.

For simplicity, we consider a shell that is only loaded at the edge, so that the external
load per unit area is F* = p = 0. As a result of equations (3.14) and (3.15), we are only
interested in the terms with j = 1 in the expansions (3.12). Therefore in the rest of this
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section the index j is omitted so that here the functions N'!, N'2, N22 (U, V and W denote
the s-dependent coefficients of sin¢ and cos ¢ in expansions similar to (3.12). Now
substituting the assumption M* =0 of the membrane theory in equations (3.4), (3.5).
we find the following equations of equilibrium for j = 1:

dnt! 5y 1 . ,
'--a~~+N I+ N“ ssin? y N22 =0 (3.16)
dN?? , 3
S NN < (3.17)
s sin y cos i N*2 = 0, (3.18)

This simple system of ordinary differential equations has the solution

NIt = f%l+(_‘% (3.19)
5508

N2 =& (3.20)
3 '

N22 =0 (3.21)

where the integration constants ¢, and ¢, can be determined from the boundary conditions.
For a beam that is only loaded at the end, the bending moment and the transverse shear
force can be written in the form

M = M,—Tyx {3.22)
T=T, (3.23)
where M, and T, are constants, and

X = $COS . (3.24)

When the membrane stress tensor is given by equations (3.19)—(3.21) and the moment
tensor disappears, equations (3.14) and {3.15) can be written in the form

M = —nNgcosys®sin® i = —mcosy s*sin®y N 325)
(3.
= —mcosysin? Y(c, +¢,8) = My— Tyx
T = nNssin® Y —nTyssin = nssin® y N'!
K Y xS siny ¥ (3.26)

—as?sin? Yy N2 = msin’ e, = Ty

Now using equations {3.25) and (3.26), we replace the constants ¢, and ¢, in equations
(3.19), (3.20) by the constants M, and Ty:
M, i T, 1

(R R _ — - (3.27)
N mcosy sin® y s* msin® s -

Mo 1 (3.28)

le — "
" mcos w sin? l//
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By application of equations (3.6) and (3.2) we can express the components of the
membrane stress tensor in terms of the displacements. Substituting these expressions in
equations (3.27), (3.28) and (3.21), we find the following three equations for the displace-
ments of the shell

du v v veoty -2 M, 1 T, 1
— - W= — : - : - 3.29
ds +ssin¢V+sU+ s Eh ( ncosn//smztpsﬁnsmzws (3.29)
dv 1+v . -M |
_g i U ="y — % 3.30
sin YV +ssin s U B s% sin w(ncosn//sinzl//ﬁ) (3.30)

. dU
V+sim/;U+cosn//W+vssmlpHs—:0. (3.31)

The solution of this system of ordinary differential equations is

My 1T
nEhsin?  scosy  wEhsin? y

M 1
° (H—v

Ins+C, (3.32)

1

V=—7%+—+—- [PV
nEh sin 2sin? Y/ s cos
v c v (3.33)
Ty 1
Do - c
T aEhsnt g TR G O
M, 1 1 s
= -2 ty—
nEh sin  cos 111(2 sin? ¥ )s cos:,bJrCl coty CZcosn// 34

- Lo 1—~1— Ins+ !
nEh sin  cos ¥ sin? ' sin? W

where C, and C, are integration constants.

When the conical shell is considered as a beam, we must define the deflection y and
the cross-sectional rotation v in terms of the displacements of the shell. Here we choose
to define y and v by the relations

y=-V (3.35)
W si U

b= _ sin ¢.+ cos (p. (3.36)
ssin

By application of equations (3.32)—(3.34) and equations (3.22)—(3.24) we can express
the beam deformations dv/dx and dy/dx—v in terms of the bending moment M and the
transverse shear force T

dv  142sin?y 1 2+v 1
— M+ (3.37)
dx mEhsin® ¢ x nEhsin s x

dy 2+v 1 21+v) 1

—— ( ) (3.38)

dx "7 nEhsiny x> "ZEhsmy x



1660 VIGGO TVERGAARD

A comparison between these equations and equations (2.1) and (2.2) shows that application
of the membrane theory leads to the following beam functions for a conical shell

0 () — 1+2sin® ¢ |

SN = Ty O (3.39)
2+ i

G e )

) = nEhsin y x2 (3-40)
2+ 1

0 e A ————— (. e )

= Ehsing (3.41)

14y
ag,(x) = U+y 1 (3.42)

nEhsin i x
where x = 0 at the vertex of the conical surface.

Cvylindrical shell

All equations for a conical shell converge towards the corresponding equations for a
cylindrical shell if we carry out the limiting process:

Y -0, 5=
) (3.43)
ssiny = R, ds — dx.

Thus, the expressions (3.39)(3.42) for the beam functions of a conical shell converge
towards the following expressions for the beam functions of a cylindrical shell:

1

L0 [
dir = nEhR? .
2 =0 (3.45)
as, =0 (3.48)
21+
0
U4y 3
227 nEhR 4

These expressions are already known from the Timoshenko beam theory.

4. CORRECTIONS OF THE BEAM FUNCTIONS

The derivation of the beam functions (3.39)—(3.42) is based on the assumption that
the membrane theory is adequate. However, this assumption is unrealistic in the vicinity
of a cross-section in which the generatrix of the shell contains a break, since the resultant
transverse force Qy and the resultant moment M, are not negligible at this cross-section.

The beam-like structure shown in Fig. 5 is a thin shell composed of one conical and
two cylindrical sections. To evaluate the predictions of the beam theory with the beam
functions (3.39)—(3.42) and (3.44)(3.47), we shall solve the problem shown in Fig. 5 by
means of the bending theory of shells.

For cylindrical shells the exact shell equations have constant coefficients, and it is
well-known that these equations can be solved analytically by exponential functions.
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F1G. 5. An axisymmetrical shell considered as a clamped beam.

For conical shells Hoff [4] has indicated that power series solutions of a set of Donnell
type equations can be obtained. However, according to Pohle [5] these series expansions
are not very useful from a numerical standpoint because of poor convergence. A power
series solution of a set of more exact equations has been proposed by Wan [6] who states
that the convergence of the series will be slow for moderate values of j in the expansions
(3.12). In the present paper we will solve the problem by a numerical analysis.

Differential equations for a conical shell

By application of the constitutive equations (3.6), (3.7) and the expressions (3.2) and
(3.3) for the membrane strain tensor and the bending strain tensor, we can write the
equations of equilibrium (3.4), (3.5) as a system of partial differential equations for the
displacements. Substituting the Fourier expansions (3.12) in these equations, we find the

following system of three ordinary differential equations for

the functions U, ¥; and W:

d’U; 1dU; 1 E 1—v h?* cot® Ul
ds? s ds s%\” 2sin’y 122 !
14y dV, j [3—v h*cot?y
150 I + 2 Y
2ssinty ds  ssinyi 2 6s
4.1
vh? cot i d2W}-+cotgb - h* \dW, :
126 ds? s 125%] ds
coty[. h*cot’y h? 1—y?
- ], .2 : ! =
52 ( T Y iagsmtg) Nt =0
. L+v dU; b h*cot? 1\
257 sin? Y ds 257 sin? QZ( e 352 Uj
N I—v h? cot? (f_VJ_,.+ [—v h? cot? y\dV,
25 sin ¥/ 352 | ds?  2s%siny 357 |ds
1 L—v[ W cot® P, hPeot?y
_ - : 2
s? sin (//{ 2 | 3s? ) i’ w\ T3 )} Vi 4.2)
L hicosy AW, vhcosy dW,
657 sin? Vo ds? T6s* sin® ¥ ds
. cosy h*{(cot? yr— 1) h? 1—?
I sin’ .,p( et estenry) it g =0
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5° ds?

t t? 4y 2
Lo \/1(12 (cot® s ‘2+ vih? o h )Uj

hl t 2 . 2
vh* cotyy d°U j+_c0t 1/1(12‘7 (1+2v)h )dU
s

Zcosy d?V, 202+ v)h2 cos y dV,

J— — + — U ;*7
]sz sin2y ds® U s*sin®y ds

. cosy 2112(cot w 3—v) 2h?
27 | B iz T ,
JSZ sin? w( 2+ 52 — 52 sin? VJ

d*w, 2h? d3 W, h?

2
h?— —— —{ 1 +2vcot?
+ e P s de o (1+ Veott i + - sn?y

h? 2j*
+—5| 1+2v cot? ¢z+r—.r
S Sin

1 h? 2y —2-—2v 2] 2 2 2
+3 %\Cot2 1//( 124 (co _“/’ﬁf,,f ,L)) "2—cot*y) ., h
> s

20-v3)
En biT

W T sin® 1/

}w

The resultant forces and moment per unit length of the edge can be expanded as shown
in equation (3.13). We find the following ordinary differential expressions for the coefficient

functions
Eh [dU; v vcot s
Ny = | =420, 4 v 252
K l—vz( & s jssml// 5 ’)
Eh j h? cot? Y\dV,
T. = 2 ) a1+t
Kj 2(1+v){ s sin ,+( AT )ds
1+hzcot2x// v h? cosxp dW,  h’cosy
s 3s? I37sin?y ds 3T sinty
. ER veoty dU; (1 +v)coty +-2COS'/’MSZ
%= i) s ds $ it T2y ds
4cosz// 2—y dW,—
r 3 sin? Vit (H—vcot VEF sin® !j/)
SW, 1w,
A R 1 2
ds® s dvz s (( +v)co l//) }
M, = BB veoty iAo cosyr,  d*W,
K200 —-v?) st siny 7 ds?

vdWw, 1 2y ;741_
+Ts"ds el R I Gin? W e

(4.4)

{(4.5)

{4.6)

(4.7)
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Carrying out the limiting process (3.43) in equations (4.1)—(4.7), we obtain the corre-
sponding equations for a cylindrical shell.

Boundary conditions

The form of the virtual work (3.8) indicates the types of boundary conditions that
can be imposed. Thus, equilibrium conditions should be expressed in terms of the resultant
forces and moment, N, Ty, @ and M, and geometrical conditions should be expressed
in terms of the displacements, U, V and W, and the rotation, dW/ds. Index K refers to
a conical shell and index C refers to a cylindrical shell.

We find that the following eight conditions must be satisfied both at cross-section 2
and at cross-section 3 of Fig. 5:

N¢j= Ng;cos y—Qy; sin yr

Te; = Ty

Qc; = Ng;sin+ Qg cos

Mes = My (48)
Ucj = Ug;cosy— Wy sin

V;Z‘j = VK;‘

We; = Ug;sinyy+ Wy cos

dWe;/dx = dWy/ds.

The clamping of the beam at cross-section [ can be simulated by different sets of
boundary conditions. Here we choose the boundary conditions

Uej =0
VCJ- =0
4.9)
Qc‘j =0
M("j = O

since these conditions result in a minimal deviation from the solution of the membrane
theory. Still in order to minimize the deviation from the membrane theory and also using
the results (3.14) and (3.15), we choose the following boundary conditions at cross-section 4 :

’N _{0, forj#1
YT =My/rR?), forj =1

0, forj#1
o= Ty/nR), for j = 1 @10
QCj =0
Mg, =0,

We note that the external load (4.10) only leads to non-trivial solutions for i = 1 in the
Fourier expansions (3.12).
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By substitution of the expressions (4.4)—(4.7) for the resultant forces and moment on
the edge of a conical shell and the corresponding expressions for a cylindrical shell in
the conditions (4.8)--(4.10), we can write the 24 boundary conditions as ordinary differential
expressions in the displacement functions U}, V; and W,.

Numerical solution

The problem shown in Fig. $ is solved by application of a finite difference method.
The differential operators are approximated by symmetrical difference operators in the
equations of equilibrium (4.1)—(4.3) for a conical shell, in the corresponding equations
for the cylindrical shells, and in the boundary conditions (4.8)-(4.10). Thus, the problem
is reduced to the solution of a system of linear algebraic equations.

Making use of the band structure of the coefficient matrix, we solve the system of
linear algebraic equations by application of Gauss-elimination.

Correction functions

By comparison, a deviation is found between predictions of the bending theory of
shells and predictions of the beam theory with the membrane beam functions. This devia-
tion is due to the inaccuracy of membrane theory in the vicinity of a junction between a
conical and a cylindrical shell. However, the boundary effects in the vicinity of junctions
may be taken into account in the beam theory by applying a set of corrected beam functions.

After having solved the shell equations numerically, we are able to compute those
values of the beam functions that should be inserted in the beam theory in order to obtain
the actual deformations of the “beam™. By application of equations (3.35) and (3.36)
we calculate the deflection y and the cross-sectional rotation v for two different external
loads, which result in linearly independent combinations of the bending moment M and
the transverse shear force T at any cross-section of the beam. Then making use of the
constitutive equations (2.1} and (2.2), we are able to determine the four functions a,,,
a5, a5, and a,,. The relations between these four functions and the beam functions
derived from the membrane theory define four correction functions:

k= agfal, fori=12/j=1.2 {4.11)

According to equations (3.45) and (3.46) we have a}, = a3, = 0 for a cylindrical shell,
s0 1n these cases the correction functions have no meaning. Then we may illustrate the
deviation from the membrane theory by a function k,, = 1 +a,,/C, where C is a constant.

In Fig. 6, the four correction functions are shown for a special case of an axisymmetrical
shell. The figure shows that corrections of the beam functions deduced from the membrane
theory should only be made in the vicinity of cross-sections, where breaks in the generatrix
occur. It also shows that the function k,, takes on much bigger values than the other
correction functions, while the function k,, lies very close to unity all over the beam.
As a consequence of the condition (2.6) for self-adjointness of the beam theory, the functions
k,, and k,, should be identical. The reason that this requirement is not precisely satisfied
at the junctions is that the cross-sections of the thin shell are very deformed here. This is
not inconsistent with a linear shell theory, but it cannot be accounted for in the beam
theory, where we attempt to describe the behaviour of the structure in terms of just two
functions y(x) and v(x). A reasonable choice of the common correction function for a,,
and a,, is the mean (k,,+k,,)/2.
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F1G. 6. Correction functions for a special case of an axisymmetrical shell, with R, = 0-100 m,
R, =0273m, h = 0004 m, y = 30° and v = 0-30.

The correction functions around a junction between a conical and a cylindrical shell

can be non-dimensionalized in the following way
x h . ,
ki = kij(i’i’ ¥, v) fori=1,2 j=1,2 (4.12)

where R is the radius at the junction, and x/R is the non-dimensional coordinate along
the beam. The correction functions have been calculated for a constant value of Poisson’s
ratio v = 0-30 and for a wide range of the parameters h/R and ¥ (see Appendix A).

Until now we have only considered beam functions for conical shells where the radius
increases with increasing x. We note that the beam functions a,, and a,, at a given cross-
section are unaffected by a change of the positive direction of the x-axis, whereas the
functions a,, and a,, change sign.

5. RESULTS

Now we are able to treat axisymmetrical shells composed of cylindrical and conical
sections as beams. To find transverse deflections of such beam-like shells we solve the
boundary value problem consisting of the equations of equilibrium (2.3), (2.4) and four
boundary conditions. To find natural frequencies we can make use of the iterative
procedure given in Ref. [1].
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The beam functions to be applied in the beam theory are the functions (3.39)—(3.42)
and (3.44)—(3.47) derived from the membrane theory with corrections according to
equation (4.11) in the vicinity of junctions between a conical and a cylindrical shell. These
beam functions are almost exactly the same as those computed by application of the
bending theory of shells, and we must consequently expect that the beam solution represents
the shell solution rather well. This was checked in the examples of Fig. 7.

3 E-d

y 5710 v B4 g2
o To

F1G. 7. Transverse deflections of beam-like shell structures. (a) Present beam theory and exact shell
solution (indistinguishable from each other in the figure). (b) Beam functions «,, and «,, neglected.
(c) Timoshenko beam theory. (d) Bernoulli-Euler beam theory.

Comparison with other beam theories
In the Timoshenko beam theory the beam has the constitutive equations

dv 1

v _ 1 5.1

dx EIM (3.1)
v Hp (5.2)
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where the cross-sectional area is denoted A4, the area moment of inertia is I, the shear
modulus is G and the constant g has the value 2 for a thin-walled circular cross-section.
In the Bernoulli-Euler beam theory, the function u/GA is neglected. We notice that the
functions 1/E{ and u/GA are given directly by equations (3.44) and (3.47).

For the four beam-like shell structures shown in Fig. 7, the transverse deflections due
to an external load are computed by application of each of the three beam theories. In
the diagrams the results of the present beam theory are indistinguishable from the results
of the bending theory of shells, whereas neither the Timoshenko theory nor the Bernoulli-
Euler theory approximates the correct solution very well in the present four cases.

Furthermore, the transverse deflections have been calculated by application of a
Timoshenko beam theory, where the functions 1/EI and /G A are replaced by the functions
a,, and a,,. We note that the difference between the result of this calculation and the
result of the present beam theory [curves (b) and (a) of Fig. 7] represents the influence of
the terms with a,, and a,, in equations (2.1) and (2.2). The mechanism of conical shells
accounted for by these two terms is actually an important part of the reason why the
Timoshenko and Bernoulli-Euler beam theories are inadequate for such structures.

Furthermore, we have calculated natural frequencies w for transverse vibrations of
three beam-like shell structures. In the table of Fig. 8 the results of the three beam theories

y Y '
7 .
> 4
— e A - 1=
Shell no 14 Shell no. 2 Shell no.3
A= wﬁﬂ Bending theory Bernoulli— Timoshenko Present
E of shells Euler theory theory beam theory
Shell No. 1
e~ 0-1226 0-1512 0-1451 0-1241
VA (+23.4°%) (+184%) (+1:3%)
— 1-676 0-8936 0-8846
Vi 09108 (+841%) (~19%) (-29%)
— N 5.023 2.583 2.591
VA 2:294 (+119:0%) (+12:6%) (+13-:0%)
Shell No. 2
— 0-7279 0-5649 0-5781
VA 0-5754 (+265%) (—1-8%) (+05%)
— 2433 1481 1465
VA, [-489 (+634%) (—06%) (=1-6%)
5.185 2.750 2:660
A .
\/—3 2-658 (+95‘|?{,) (+3.5‘/’/‘;) (+0-1‘,)/0)
Shell No. 3
0-3679 0-3178 0-3046
A .
VA 0-3066 (+200%) (+37%) (=07%)
2167 1271 1075
VA, 1080 (+100.72) (+17.7%) (—0-5%)
5.665 2-697 2477
/A 2.425 2
3 (+1336%) (+112%) (+2:1%)

F1G. 8. Natural frequencies of shell structures. Parentheses contain relative errors in per cent.
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are compared with results obtained by numerical analysis of the differential equations
of the bending theory of shells. The Bernoulli~Euler beam theory gives poor approximations
of the three smallest frequencies for the structures, whereas the present beam theory leads
to good results in all cases except one. In the vibration analysis we use beam functions
derived assuming no surface loads. However, in dynamic problems the inertial load terms
enter the equations of motion of the thin shells with the effect that large deformations of
the cross-sections occur at relatively high frequencies. This was pointed out by Simmonds
[7] for cylindrical shells, and knowing the mode functions predicted by the bending theory
of shells we may conjecture that the 13 per cent error in the third frequency of shell No. |
is mainly due to this effect. In the important case of the first frequency of shell No. 1 the
prediction of the Timoshenko beam theory is not good, and the same is true for the second
and third frequencies of shell No. 3. In the other cases shown in the table the Timoshenko
beam theory leads to quite good results, but normally this cannot be expected.

1t should be emphasized that the beam theory presented here is useful only for shells
where the geometry of the middle surface varies along the length of the shell. For cylindrical
shells the beam theory reduces to the Timoshenko beam theory.

Acknowledgements—The author is indebted to Professor Frithiof 1. Niordson, to Professor John W. Hutchinson
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APPENDIX A

Correction functions around junctions

The correction functions given below are computed by numerical solution of the full
shell equations. The function k,, equals one in all cases, and we further note that all correc-
tion functions are equal to one, when the angle  is zero. The function named k, , is actually
computed as (k, , + k,,)/2; and furthermore, as mentioned in the text below equation (4.11),
this function is evaluated in a special way at cylindrical shells. The constant C mentioned
there is chosen as the value of the membrane beam function a?, for the conical shell at the
junction.
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AGcrpakT—ITpumenserca obobuienHas Teopus 0anok, paHbllie MPEASIOKEHHAA aABTOPOM, K PEIIEHUIO
CUMMETPHYECKOH 000M04KH BPALIEHHS, COCTOYLIEH H3 LHNINHAPUIECKAX U KOHHYECKHX CEKIHi. Yka3ano,
YTO HACTOsLIAA Teopus, B KOTOPO# rubkocts Ganku onpenenena verHpbMs OYHKUMSMH, OPUTOLHA
s pacdeta oboHOSIKL B cMmbiciie u3rnbaemoit Ganku, nns ciyvaes, xoraa teopuu 6anok Beprynnm-
3itnepa u THMOWIEHKY HEOOCTATOMHbI.

Onpegenstoress GyHKUMM FrMOKOCTH M3 ypaBHeHud Ge3MOMEHT-HOro cocroanua obonoku. TMonyu-
A10TCH BUAOW3IMEHEHUS HA T'PAHULAX, H3IXOAN M3 MOJIHBIX YPaBHEHUH 000n0UKH.



