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BEAM ANALYSIS OFAXISYMMETRICAL SHELLS

VIGGO TVERGAARD

Department of Solid Mechanics, The Technical University of Denmark, Lyngby, Denmark

Abstract-A generalized beam theory, earlier developed by the author, is applied to a rotationally symmetrical
shell structure consisting of cylindrical and conical sections. It is shown that this theory, in which the flexibility
of the beam is specified by four functions, is adequate for treating the shell structure as a beam in bending
in cases where the Bernoulli-Euler and Timoshenko beam theories prove to be deficient.

Flexibility functions are derived from the membrane equations of the shell structure, and modifications at
the boundaries are obtained from the complete shell equations.

1. INTRODUCTION

BEAM-LIKE shell structures cannot in general be treated adequately as one-dimensional
structures by the Bernoulli-Euler or the Timoshenko beam theories. However, a one­
dimensional treatment with all its advantages need not be abandoned in the calculation
of certain properties of beam-like shell structures provided a more general beam theory
is employed. In a previous paper [1] such a beam theory was developed, and it was applied
to the calculation of natural frequencies of some beam-like trusses that cannot be treated
adequately by the other beam theories. In the present paper we derive the four beam
functions, defining the flexibility of the beam, for an axisymmetrical thin shell composed
of cylindrical and conical sections. As it is characteristic of beams with thin-walled cross­
sections that the bending moment and the transverse shear force are mainly transmitted
by membrane forces, we begin by deducing a set of beam functions from the membrane
theory. Because of boundary effects these beam functions should be corrected in the
vicinity of a junction between a conical and a cylindrical shelL

2. BEAM-LIKE STRUCTURES

The beam-like structures under consideration are straight and elastic, and symmetrical
about the plane in which all loads act. An axisymmetrical thin shell is an example of such
a structure provided the external loads are beam-type loads.

In Fig. 1, the positive directions are defined for the bending moment M and the
transverse shear force T The external loads are q. dx and m. dx. Figure 2 shows the
positive directions of the transverse deflection y, the angle of rotation of the cross-section v
and the angle}' between the normal of the cross-section and the middle line.

According to Ref. [1] the constitutive equations are

dv
-d = allM +a 1 2 T (2.1)

x

dy
dx -v = a21 M+a 22 T (2.2)
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FIG. I. Loads on an element of the beam.

where the four beam functions a 11 (x), a 12(x), a21 (x) and a22(x) determine the flexibility
of the beam. The equations of equilibrium for the beam are

~{~ du _~~(dY -v)} = q
dx D dx D dx

.~{_all dv +~(dY -v)} +{~ dv _~(dY -v)} = m
dx D dx D dx D dx D dx

where the function D(x) is defined as

D(x) = all(x)adx)-aI2(x)a21(x).

(2.3)

(2.4)

(2.5)

Different sets of boundary conditions for the beam are mentioned in Ref. [I]. It can be
shown that Maxwell's theorem results in the condition

(2.6)

Furthermore, the conditions

(2.7)

must be satisfied, as the strain energy has to be positive.

3. BEAM FUNCTIONS DERIVED FROM MEMBRANE THEORY

In this section we shall derive a set of beam functions for a conical shell, assuming that
the membrane theory is valid.

y

• x

FIG. 2. Deformations of an element of the beam.
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As shown in Fig. 3, we choose the coordinate system so that a point (u 1
, u2

) on the
middle surface of the conical shell has the cartesian coordinates

xi(ua
) = (u 1 cos t/J, u1 sin t/J sin u2

, u1 sin t/J cos u2
).

The unit normal to the surface is Xi.

(3.1)

--x'
(x I

FIG. 3. Conical surface. For comparison with Figs. 1and 2. lhe x~y-coordinates are shown in parentheses.

Shell theory

In the following we are going to use a set of shell equations given by Niordson [2].
These equations are acceptable in the sense of Koiter [3].

The displacements of a point on the middle surface are va in the directions of the
surface base vectors and w in the direction of the surface normal. The deformations of the
middle surface can be expressed by the membrane strain tensor

and the bending strain tensor

K ap = DaDpw +dayDpvY +dpyDavY + vYDpdya-dpyd;w

(3.2)

(3.3)

where dap is the curvature tensor of the undeformed middle surface and Dadenotes covariant
differentiation.

The external loads per unit area of the middle surface are Fa and p, acting in the direc­
tions of the surface base vectors and the surface normal, respectively. Then the equations
of equilibrium can be written in the form

D Nap +2dPD May + MaYD dP +FP = 0 (3.4)a }' a tlfC'y

DaDpMap -dapd~May -dapNaP - p = 0 (3.5)

where Nap is the symmetric membrane stress tensor and Map is the symmetric moment
tensor.

We assume that the constitutive equations for the shell are

(3.6)

(3.7)
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(3.8)

where g"/! is the metric tensor of the undeformed middle surface, E denotes Young's
modulus, II is Poisson's ratio and Ii is the shell thickness.

Resultant moment andforces on a cross-section

We consider a cross-section perpendicular to the symmetry axis of a conical shell
(Fig. 4). The unit normal vector to the edge is denoted n°, and the unit tangent vector is t'.
The parameter ~ measures length along the edge of the shell.

It can be shown that the virtual work of the resultant forces and moment on the edge is

6A = fCf"6v.+QK6w+M K 6(}) d~

N

X'
FIG. 4. Resultant momenl and forces on the edge of a conical shell.

where the effective boundary membrane force per unit length is

T" = (N"/J+d·M!J)'+d't t'M!J")n
Y :J (f {J

the effective transverse force per unit length is

QK = -(D.M·/J)I1!J-a(M'!Jl1h)ja~

the bending moment per unit length is

'" - M'!J!VI K - 11.l1fJ

(3.9)

(3.10)

(3.11)

and () denotes the rotation of the tangent vector. Index K refers to the conical shell, while
index C will later refer to a cylindrical shell. The normal component and the tangential
component of the membrane force are N K T"I1. and TK = T"t" respectively.

Fourier expansions or displacements
We now introduce the physical displacements U = Vi, V /.II sin!/J v2 and W w,

and the traditional nomenclature (s,4» (u l
, /./2) for the coordinates on the conical

surface. Using a standard Fourier expansion of the displacement functions for an axisym­
metrical shell, we assume the solution

U)s) cos(j4»l
~ Jo V;i*in(j¢1 .

l1j{s) cos(j4»

(3.12)
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(3.15)

Then by application of equations (3.2), (3.3) and (3.6), (3.7), we find that the resultant
forces and moment per unit length of the edge can be written in the form

NK N Kis) cos(j¢)

TK I; TK}s) sin(j¢)
I (3.13)

QK j=O QKis) cos(j¢)

M K MKis) cos(j¢)

and if we make a similar Fourier expansion of the external loads P and p, we find that
the equations of equilibrium decouple into an infinite number of systems of three ordinary
differential equations for the s-dependent functions V j , ~ and ftj. These are given in
Section 3.

As we wish to consider the shell as a beam, we shall now express the bending moment M
and the transverse shear force T for the beam (Fig. 1) in terms of the resultant forces and
moment on a cross-section of the shell (Fig. 4). As indicated in Fig. 3, we choose the beam
coordinates so that y = x3 and x = Xl. We calculate the contributions of the resultant
moment and forces for any value of j in the expansions (3.13). The contributions to the
bending moment for the beam are:

and the contributions to the transverse shear force for the beam are:

~ = (N Kj sin ljJ +QKj cos ljJ)s sin ljJ fit cos ¢ cos(j¢) d¢

- TKi sin ljJ fit sin ¢ sin(j¢) d¢

{
a, for j # 1

- n(NKj sin ljJ +QKj cos ljJ - TK)s sin ljJ, for j = 1.

Equations (3.14) and (3.15) show that only the terms with j = 1 in the expansions
(3.12), (3.13) are able to transmit a bending moment and a transverse shear force.
Consequently, only these terms are relevant when we wish to describe the shell by a beam
theory.

Membrane theory
It is characteristic of beams with thin-walled cross-sections that the bending moment

and the transverse shear force are mainly transmitted by the membrane forces. Therefore,
it is natural first to determine the four beam functions from the membrane theory.

For simplicity, we consider a shell that is only loaded at the edge, so that the external
load per unit area is F' = P = 0. As a result of equations (3.14) and (3.15), we are only
interested in the terms with j = I in the expansions (3.12). Therefore in the rest of this
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section the index j is omitted so that here the functions N 11 , N 12, N 22, U, Vand W denote
the s-dependent coefficients of sin </J and cos </J in expansions similar to (3.12). Now
substituting the assumption M"P == 0 of the membrane theory in equations (3.4), (3.5),
we find the following equations of equilibrium for j = I :

dN II ? 1 I II . 2 n------+ N~ +N -s SIll ./, N~~ 0 (1 16)ds s '!' .,

dN
12

22 3 12--+N +-N = 0
ds s

s sin lj; cos lj; N 22 = O.

This simple system of ordinary differential equations has the solution

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

where the integration constants ('1 and ('2 can be determined from the boundary conditions.
For a beam that is only loaded at the end, the bending moment and the transverse shear
force can be written in the form

where M0 and To are constants, and

M = M o Tox

T= To

x = s cos lj;.

(3.22)

(3.23)

(3.24)

(3.25)

When the membrane stress tensor is given by equations (3.19)-(3.21) and the moment
tensor disappears, equations (3.14) and (3.15) can be written in the form

M = -nNK cos lj; S2 sin 2 lj; -n cos lj; S2 sin2 lj; NIl

-n cos lj; sin2 lj;(cl +c2s) = M o - Tox

T = nNKS sin 2 lj;-nTKs sin lj; = ns sin2 lj; Nil

-ns2 sin2 lj; N I2 = n sin2 lj; c2 = To.
(3.26)

(3.27)

Now using equations (3.25) and (3.26), we replace the constants ('I and ('2 in equations
(3.19), (3.20) by the constants M 0 and To:

Mo I To 1
----~--- - +-~--

n cos lj; sin2 lj; S2 n sin2 lj; s

Mo 1
-ncos lj; sinr~ S3'

(3.28)
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(3.30)

By application of equations (3.6) and (3.2) we can express the components of the
membrane stress tensor in terms of the displacements. Substituting these expressions in
equations (3.27), (3.28) and (3.21), we find the following three equations for the displace­
ments of the shell

dU +_v_V+~U+vcotl/JW=1-V
Z
(_ Mo. ~+ .To ~) (3.29)

ds s sin l/J s s Eh n cos l/J smz l/J sZ n smz l/J s

dV l+v Z . Z ( -Mo 1)
- sin l/J V + s sin l/J -d - U = Eh 2s sm l/J ./, . Z./, 3s n cos 'I' sm 'I' s

V +sin l/JU +cos l/JW + vs sin l/J ~~ = o. (3.31)

The solution of this system of ordinary differential equations is

M o 1 To
U = -----+----lns+C

nEh sinzl/J s cos l/J nEh sinz l/J 1
(3.32)

Mo ( 1) 1V= l+v- --
nEh sin l/J 2 sinz l/J s cos l/J

To C 1
+ h' 3l/J{l +In s)-~+Czs

nE sm sm'l'

(3.33)

Mo (1 ) 1 sW = 2 --+C 1 cot l/J - Cz--
nEh sin l/J cos l/J 2 sinZl/J s cos l/J cos l/J

To {( 1) 1}- 1--- lns+v---
nEh sin l/J cos l/J sinzl/J sinz l/J

(3.34)

where eland CZare integration constants.
When the conical shell is considered as a beam, we must define the deflection y and

the cross-sectional rotation v in terms of the displacements of the shell. Here we choose
to define y and v by the relations

(3.35)

(3.36)v=

y =-V

W sin l/J + V cos l/J
s sin l/J

By application of equations (3.32)-{3.34) and equations (3.22)-(3.24) we can express
the beam deformations dv/dx and dy/dx - v in terms of the bending moment M and the
transverse shear force T:

dv 1 + 2 sinz l/J 1 2+ v 1
-= --M+ -T
dx nEh sin3 l/J x3 nEh sin l/J xZ (3.37)

dy 2+v 1 2(1+v) 1
--v= -M+ -T
dx nEh sin l/J xZ nEh sin l/J x .

(3.38)
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(3.41 )

A comparison between these equations and equations (2.1) and (2.2) shows that application
of the membrane theory leads to the following beam functions for a conical shell

o 1+2 sin 2 ljJ I
a I tlx) =---h---- ---;c----J-----3 (3.39)

nE sm lIt x-

o 2+v I
a l2(xl =-E--h---:~- ') (3.40)- n sm ljJ x~

o 2+ v 1
a21 (x) =---~~----

- rcEh sin ljJ x 2

o - 2(1 + v) 1
a22(x) = , --­

nEh sm lIt x

where x = 0 at the vertex of the conical surface.

(3.42)

(3.44)

Cylindrical shell

All equations for a conical shell converge towards the corresponding equations for a
cylindrical shell if we carry out the limiting process:

{
ljJ --> O. S ---:1.' (3.43)
s sin ljJ = R. ds --> dx.

Thus, the expressions (3.39)-(3.42) for the beam functions of a conical shell converge
towards the following expressions for the beam functions of a cylindrical shell :

o Ia - -._-------
II - rcEhR 3

a?z 0

a~1 0

o 2(1 + v)
a22 = -;EhR-'

These expressions are already known from the Timoshenko beam theory.

4. CORRECTIONS OF THE BEAM FUNCTIONS

(3.45)

(3.46)

(3.47)

The derivation of the beam functions (3.39)-(3.42) is based on the assumption that
the membrane theory is adequate. However, this assumption is unrealistic in the vicinity
of a cross-section in which the generatrix of the shell contains a break, since the resultant
transverse force QK and the resultant moment MK are not negligible at this cross-section.

The beam-like structure shown in Fig. 5 is a thin shell composed of one conical and
two cylindrical sections. To evaluate the predictions of the beam theory with the beam
functions (3.39)-(3.42) and (3.44)~(3.47), we shall solve the problem shown in Fig. 5 by
means of the bending theory of shells.

For cylindrical shells the exact shell equations have constant coefficients, and it is
well-known that these equations can be solved analytically by exponential functions.
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r
2 3

FIG. 5. An axisymmetrical shell considered as a clamped beam.

For conical shells Hoff [4] has indicated that power series solutions of a set of Donnell
type equations can be obtained. However, according to Pohle [5] these series expansions
are not very useful from a numerical standpoint because of poor convergence. A power
series solution of a set of more exact equations has been proposed by Wan [6] who states
that the convergence of the series will be slow for moderate values of j in the expansions
(3.12). In the present paper we will solve the problem by a numerical analysis.

Differential equations for a conical shell

By application of the constitutive equations (3.6), (3.7) and the expressions (3.2) and
(3.3) for the membrane strain tensor and the bending strain tensor, we can write the
equations of equilibrium (3.4), (3.5) as a system of partial differential equations for the
displacements. Substituting the Fourier expansions (3.12) in these equations, we find the
following system of three ordinary differential equations for the functions U·, V and W:

J J J

(4.1 )

(4.2)
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_~~~c~~ d
2
V j +cot lj;( 12l' +~I_::t:-_~:')h~) dVi

5- d5 2 S S2 ds

+ CO~ lj;( 12+(~ot2lj; -2-:1=~l')h~+/_!~_O __') U
s S2 S2 sm- lj; J

.2h2 COS lj; d 2Vi .2(2 + l'W cos lj; d Vi
-] --+]--

S2 sin2 lj; d5 2 53 sin 2 lj; ds

+j~C~S lj; (12+ 2h2(~()t2lj;~~.~!l+/_~~~2_) V
s2 sm2lj; 52 s2 sm2lj; J

d
4

W 2h2
d

3
W h

2
( 2/ )d2 W

+h2_.....l+~ ....~J__ I +2vcot2lj;+c-~ .....1.
d54 5 ds 3 S2 sm2 lj; d52

h2
( 2 2/ )dW+- 1+2l' cot lj;+~---....!

53 sin2 lj; ds

(4.3)

+~ {cot2 lj;( 12 +I~~coe t/J.~_~~ ?l')) _ f 211
2
(2-:coe lj;) +t~---}W

52 S2' S2 sm2 lj; . 52 sm4 lj; J

_12(l-~ -0
Eh Pi - .

The resultant forces and moment per unit length of the edge can be expanded as shown
in equation (3.13). We find the following ordinary differential expressions for the coefficient
functions

N K' = ~l}_~_ (d V j + ~V + j __l' _ V. + v co!...t/t...w)
J 1_ l'2 d5 S J 5 sin lj; J s J

. 4 cos lj; 1 ( 2'2 2 - v ) d J.1j
-]-3-~Vi+2 1+l'cot lj;+]~ --d

s sm 'I' s Sill 'I' S

d
3

Wj 1 d
2

Wj 1 ( 2'2 3 - v) }----- ---- (I +l')cot lj;+] --;-- W
ds 3 S ds 2 S3 sm2 lj; J

Eh 3 {l'cotlj; .2l'coslj; d 2Wj
MKj = 120-=,-;-,2) - --s~Vi - ] -;2 sinz-;;; Vi +ds2

v d W 1 ( 2 .J V ) }+- __J __ v cot lj; + r-.--- W .
s d5 S2 . Sill2 lj; J

(4.4)

(4.5)

(4.6)

(4.7)
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(4.8)

(4.9)

(4.10)

Carrying out the limiting process (3.43) in equations (4.1)-(4.7), we obtain the corre­
sponding equations for a cylindrical shell.

Boundary conditions

The form of the virtual work (3.8) indicates the types of boundary conditions that
can be imposed. Thus, equilibrium conditions should be expressed in terms of the resultant
forces and moment, N K' TK , QK and MK, and geometrical conditions should be expressed
in terms of the displacements, U, V and W, and the rotation, dW/ds. Index K refers to
a conical shell and index C refers to a cylindrical shelL

We find that the following eight conditions must be satisfied both at cross-section 2
and at cross-section 3 of Fig. 5:

NCj = N Kj cos t/J - QKj sin t/J

TCj = TKj

QCj = N Kj sin t/J+QKj cos t/J

M Cj = M Kj

UCj = UKj cos t/J - WKj sin t/J

VCj = VKj

WCj = UKj sin t/J + WKj cos t/J

dWc/dx = dWK/ds.

The clamping of the beam at cross-section 1 can be simulated by different sets of
boundary conditions. Here we choose the boundary conditions

UCj = °
VCj = 0

QCj = °
M Cj = °

since these conditions result in a minimal deviation from the solution of the membrane
theory. Still in order to minimize the deviation from the membrane theory and also using
the results (3.14) and (3.15), we choose the following boundary conditions at cross-section 4:

{
a, for j =I .1

N
Cj

= -Mo/(nR 2), for j = 1

T
c

. = {a, for j =I 1
J _ To/(nR), for j = 1

QCj = °
M Cj = 0.

We note that the external load (4.10) only leads to non-trivial solutions for i = 1 in the
Fourier expansions (3.12).
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By substitution of the expressions (4.4)-(4.7) for the resultant forces and moment on
the edge of a conical shell and the corresponding expressions for a cylindrical shell in
the conditions (4.8)--(4.10), we can write the 24 boundary conditions as ordinary differential
expressions in the displacement functions U j , Vj and Wj.

Numerical solution

The problem shown in Fig. 5 is solved by application of a finite difference method.
The differential operators are approximated by symmetrical difference operators in the
equations of equilibrium (4.1)-(4.3) for a conical shell, in the corresponding equations
for the cylindrical shells, and in the boundary conditions (4.8)-(4.10). Thus, the problem
is reduced to the solution of a system of linear algebraic equations.

Making use of the band structure of the coefficient matrix, we solve the system of
linear algebraic equations by application of Gauss-elimination.

Correction functions

By comparison, a deviation is found between predictions of the bending theory of
shells and predictions of the beam theory with the membrane beam functions. This devia­
tion is due to the inaccuracy of membrane theory in the vicinity of a junction between a
conical and a cylindrical shell. However, the boundary effects in the vicinity of junctions
may be taken into account in the beam theory by applying a set ofcorrected beam functions.

After having solved the shell equations numerically, we are able to compute those
values of the beam functions that should be inserted in the beam theory in order to obtain
the actual deformations of the "beam". By application of equations (3.35) and (3.36)
we calculate the deflection y and the cross-sectional rotation v for two different external
loads, which result in linearly independent combinations of the bending moment M and
the transverse shear force T at any cross-section of the beam. Then making use of the
constitutive equations (2.1) and (2.2), we are able to determine the four functions all'

a12 , a2l and an' The relations between these four functions and the beam functions
derived from the membrane theory define four correction functions:

k;j = aia~ for i = 1, 2, j = 1, 2. (4.11 )

According to equations (3.45) and (3.46) we have a72 = a~ I = 0 for a cylindrical shell,
so in these cases the correction functions have no meaning. Then we may illustrate the
deviation from the membrane theory by a function Kl2 = I +a I2/C, where C is a constant.

In Fig. 6, the four correction functions are shown for a special case ofan axisymmetrical
shell. The figure shows that corrections of the beam functions deduced from the membrane
theory should only be made in the vicinity of cross-sections, where breaks in the generatrix
occur. It also shows that the function kll takes on much bigger values than the other
correction functions, while the function k22 lies very close to unity all over the beam.
As a consequence ofthe condition (2.6) for self-adjointness ofthe beam theory, the functions
kl2 and k21 should be identical. The reason that this requirement is not precisely satisfied
at the junctions is that the cross-sections of the thin shell are very deformed here. This is
not inconsistent with a linear shell theory, but it cannot be accounted for in the beam
theory, where we attempt to describe the behaviour of the structure in terms of just two
functions y(x) and v(x). A reasonable choice of the common correction function for a l2

and a21 is the mean (k 12 +k21 )/2.
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o

FIG. 6. Correction functions for a special case of an axisymmetrical shell, with R [ = 0·100 m,
R z = 0·273 m, h = 0·004 m, t/J = 30° and v = 0·30.

(4.12)j = 1,2

The correction functions around a junction between a conical and a cylindrical shell
can be non-dimensionalized in the following way

kij = kij(i,~,Ijt, v) for i = 1,2

where R is the radius at the junction, and xlR is the non-dimensional coordinate along
the beam. The correction functions have been calculated for a constant value of Poisson's
ratio v = 0·30 and for a wide range of the parameters hlR and Ijt (see Appendix A).

Until now we have only considered beam functions for conical shells where the radius
increases with increasing x. We note that the beam functions all and a22 at a given cross­
section are unaffected by a change of the positive direction of the x-axis, whereas the
functions a l2 and a2l change sign.

5. RESULTS

Now we are able to treat axisymmetrical shells composed of cylindrical and conical
sections as beams. To find transverse deflections of such beam-like shells we solve the
boundary value problem consisting of the equations of equilibrium (2.3), (2.4) and four
boundary conditions. To find natural frequencies we can make use of the iterative
procedure given in Ref. [1].
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The beam functions to be applied in the beam theory are the functions (3.39)-(3.42)
and (3.44)-(3.47) derived from the membrane theory with corrections according to
equation (4.11) in the vicinity of junctions between a conical and a cylindrical shell. These
beam functions are almost exactly the same as those computed by application of the
bending theory of shells, and we must consequently expect that the beam solution represents
the shell solution rather well. This was checked in the examples of Fig. 7.

o------"--'-----'--....
o .2 .4 .6 .8 1

~
.8 1

x/1
.4 .6.2

o_"'-'-_........._.J.----'_.....
o

~
TO

/.

----------_. - - ---- -,~

4 -

o_i::..l._........._.J.----'_.....
o .2 .4 .6 .8 1

x/i

o L-::::I;;,=;J::::::::""....L.---l_..J

~o
FIG. 7. Transverse deflections of beam-like shell structures. (a) Present beam theory and exact shell
solution (indistinguishable from each other in the figure). (bl Beam functions (/12 and (/21 neglected.

(c) Timoshenko beam theory. (d) Bernoulli-Euler beam theory.

Comparison with other beam theories
In the Timoshenko beam theory the beam has the constitutive equations

dv 1- = -M (5.1)
dx EI

dy f.1
--v = -T (5.2)
dx GA
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where the cross-sectional area is denoted A, the area moment of inertia is ], the shear
modulus is G and the constant jl has the value 2 for a thin-walled circular cross-section.
In the Bernoulli-Euler beam theory, the function jljGA is neglected. We notice that the
functions l/E] and jljGA are given directly by equations (3.44) and (3.47).

For the four beam-like shell structures shown in Fig. 7, the transverse deflections due
to an external load are computed by application of each of the three beam theories. In
the diagrams the results of the present beam theory are indistinguishable from the results
of the bending theory of shells, whereas neither the Timoshenko theory nor the Bernoulli­
Euler theory approximates the correct solution very well in the present four cases.

Furthermore, the transverse deflections have been calculated by application of a
Timoshenko beam theory, where the functions l/E] and jljGA are replaced by the functions
all and a 22 . We note that the difference between the result of this calculation and the
result of the present beam theory [curves (b) and (a) of Fig. 7] represents the influence of
the terms with a l2 and a21 in equations (2.1) and (2.2). The mechanism of conical shells
accounted for by these two terms is actually an important part of the reason why the
Timoshenko and Bernoulli-Euler beam theories are inadequate for such structures.

Furthermore, we have calculated natural frequencies w for transverse vibrations of
three beam-like shell structures. In the table of Fig. 8 the results of the three beam theories

Shell no. i Shell no. 2 Sh ell no. 3

(J)2/2 p Bending theory Bernoulli- Timoshenko PresentA=---
E of shells Euler theory theory beam theory

Shell No. I

fA; 0·1226 0·1512 0·1451 0·1241
( +23-4%) (+18·4%) (+1·3%)

...;7\; 0·9108
1·676 0·8936 0·8846

(+84·1 %) (-1·9%) (-2·9%)
fA- 2·294

5·023 2·583 2·591v A3 (+ 119·0~~) (+ 12·6%) ( + 13·0 'Y~)

Shell No.2

fA; 0·5754
0·7279 0·5649 0·5781

(+ 26·5 ~~) ( -1·8'1~) (+0·5,%,)

./A; 1·489 2-433 1-481 1·465
( + 63-4 '10) (-0·6%) (-1·6%1

JA3 2·658
5·185 2·750 2·660

(+95·1 ~-;;) (+3·5 ~,;;) (+0.1 0
';;)

Shell No.3

fA; 0·3066
0·3679 0·3178 0·3046

( +20·0%) (+3·7%) (-0·7%)

fi; 1·080
2·167 1·271 1·075

(+100·7%) (+ 17·7%) (-0·5%)

A 2·425 5·665 2·697 2-477
(+ 133·6%) (+11·2%) (+2·1 'I~)

FIG. 8. Natural frequencies of shell structures. Parentheses contain relative errors in per cent.
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are compared with results obtained by numerical analysis of the differential equations
ofthe bending theory ofshells. The Bernoulli-Euler beam theory gives poor approximations
of the three smallest frequencies for the structures, whereas the present beam theory leads
to good results in all cases except one. In the vibration analysis we use beam functions
derived assuming no surface loads. However, in dynamic problems the inertial load terms
enter the equations of motion of the thin shells with the effect that large deformations of
the cross-sections occur at relatively high frequencies. This was pointed out by Simmonds
[7] for cylindrical shells, and knowing the mode functions predicted by the bending theory
of shells we may conjecture that the 13 per cent error in the third frequency of shell No. I
is mainly due to this effect. In the important case of the first frequency of shell No. I the
prediction of the Timoshenko beam theory is not good, and the same is true for the second
and third frequencies of shell No.3. In the other cases shown in the table the Timoshenko
beam theory leads to quite good results, but normally this cannot be expected.

It should be emphasized that the beam theory presented here is useful only for shells
where the geometry of the middle surface varies along the length of the shell. For cylindrical
shells the beam theory reduces to the Timoshenko beam theory.

Acknowledgements--The author is indebted to Professor Frithiof L Niordson. to Professor John W. Hutchinson
and to Lektor Niels Olhoff for many valuable comments on the present paper.
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APPENDIX A

Correction functions around junctions

The correction functions given below are computed by numerical solution of the full
shell equations. The function k22 equals one in all cases, and we further note that all correc­
tion functions are equal to one, when the angle t/J is zero. The function named k12 is actually
computed as (k 12 +k21 )/2; and furthermore, as mentioned in the text below equation (4.11),
this function is evaluated in a special way at cylindrical shells. The constant C mentioned
there is chosen as the value of the membrane beam function a~ 2 for the conical shell at the
junction.
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A6cTpaKT-npllMelllleTClI o606111ellllall Teopllll 6aJlOK, pallbllle npeAJlo)J{ellHall aBTopoM. K pellleHlllO

cIIMMeTplI'leCKoi% 060JlO'lKII BpallleHlIlI, COCTO'llllei% 111 L(1IJ1I1HAPII'leCKIIX II KOHII'IeCKIIX CeKL(IIi%. YKa3aHO.

'ITO HaCTOlllllall TeOplIll, B KOTOpoil fll6KOCTb 6aJlKII OnpeAeJleHa '1eTHpbMlI IjIYHKL(lIlIMII, npllfOAHa

AJllI paC1feTa 0601l0llKL( B CMbICJle 113fll6aeMOil 6aJlKII, AJllI CJly'laeB, KOfAa TeOp1l1l 6aJlOK liepHYJlJlII­

3ilJlepa II TIIMOllleHKII HeAOCTaTO'lHbI.

OnpeAeJllllOTClI ljIyHKL(1I11 fll6KOCTII 113 ypaBHeHllil 6e1MOMeHT-1l0fO COCTOllHlIlI 060JlOKII. nOJlY'l­

alOTCli BI1AOll3MeHeHI111 Ha fpaHIIL(aX, 1I1XOAlI 111 nOJlHblX ypaBlleHIIH 060JlO'lKII.


